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A UNIFIED

OF
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TEEORY OF PLASLIIC3T?2KLING

COLUMNS AND PH.TF-S
.-

Elbrit&e Z.-St:mell —,

SUMW3Y

On the basis of modern plasticity considerations, a Uni.fl.ed
theory of plastic buckling applicable to botl!colmns and plates
has been developed, For uniform compression, the theory shows

.: ... ... .. . =-——

that long’colum& which tend without-ap=m6ciable twisting ~qufre –_ ..
the tangent modulus and that loRg flan@ B which twist witho~yt
apprectable Ix5ndm require the secant modulus.

.-
Structures that

both bend and twi.s%when they buckle require a mo@Lus “whfchia
a combination of the secant modulus and the targen$ mo(lulu~, .

INTRODWTION
-.——L-——

The calculation of the critical compressive stress of CO1%S
and of structures readsup of plates is an important problem in
aircr8Ft design. Formulas f011the critical compressive stre;s

-.

have been worked out for a multltude of wines of both columm. and
plates, but these formulas are accurate ordy if the buckling takes
place within the elast~c range of the DM~.erial. In present+lay
desi@s, most buckling occurs above the elastic range. The usual
~thod of handling thi+ problem is to retain all the formul+s
derived for the elastic case, but to try to discover ~effectiv&-,-
or reduced..modulus of elasticity which will give the correct result
when inserted into these formulas. —

Column buckling was the first struc%rsl problem to be stud~ed
in the Tlastic ran=. In the latter part of the nineteenth centu-y,
Engesser proposed use of the tangent mOd.l;LUSas the reduced modulus
for columns. At almost the same time, in the belief’thab the .
column would be strengthened by unloading on We copvex sif.le2__
Consid&e s~ested that the effective modulus should lie between _.
the tangent modulus and Young?s modulus. -This concept was.subse-
quently refined b~ En&esser and by Ton K&r&n (reference 1) and
led to what is generally known as the “double modulus.”
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2 NACA TN No.
.

E~eriments have shown, however, that the von K&&n double
nlodulusgives values that are too high for the column stren@h
(reference 2) and that the correct modulus is nrobably the
tangent modulus. Shanley (reference 3) has stated the situation
compactly as follows: “If the tsmgent modulus ie use&directly
in the Euler formula, the reeulting criiical lo@ f.ssomewhat
lower than that Siven by the reduced modulus theory. This
Mmpler formula, originally proposed by Engesser, Is ndw widely
used by engineers, since it gives valves that agree very well
with test data.” Further careful tests hy Shanley (reference 4)
and also by I.an@ey structvzws research laboratory have shown
that the unloading on one side of the c{i-umu,poetul.atedby
von K&m&s, does not occ”urat buckling PM tha~ the correct modulus
for columns 3s actuslly the tan~ent modl?~.us.This conclusion also
has theoretical justification (references snd 4).

,.

Xn.tihecase of localor plate huckj.ing,the reduced modutus
‘3.sappreciably higher thszathe tangent rncib.il.us,Tests of the
local bucld.ing.s,trqssof aircraft-section columns have been made
by Gerard (reference ~), who has suggested.the use of the secant
modulus for this t~e ofbuckling. .Extunsiveteets In the
_ey st~~tu”ee reeearch laboratory cm similar aircraft seo-
tlons made and reported over a period oi’several years and
summarized in reference 6 have also shown that the reduced
modulus for ~lates is in the vtcinity of the secret modulus.
In pccrticular,tests of lon~.alumlnum+q.loy cruclfomsectlon
columnsj designed to buckle by twisting withnut appreciable
lendin[j,have been made in a manner similar to that described
for the aircraft-section columns in reference 6. The results
have shown that the re,ducedmodulus for pure twistin~ is very
close to the secant modulus. .,

The present paper constitutes @ theoretical tnvestlCation
of the bucklin~ of plates .~e.yonclthe elastic ren~, which includes
columns as a limiting case, Such em invewti~tion requl.resa
kncwled~e of the relatlons betweenthe stress and strain components
beyond the elastic ranee. These relations have not as yet been
conclusively determined. A reoent paper by Handelman and Prager
(reference 7) lmsecl on one Possi%le set of stress-strain relutions
led to results for.the bucklin~.of hin~d flan~~s in sharp disagree-
ment with test results obtained at the Lea[~#.eystructures research
laboratory, Another set of stress+straiu relations is flenerally
accepted by the.Russian investigators and has Imen .q@.imi by
Ilyuehln (reference 8) to the stress conditions,in thin plates.
These results form the foundation of the present paper, which
assumes that in plates ,as‘wellas In columns, unloc+d.ingduring the,
early sta~es ofl,buclcklnfldoes not OCCUY, On this basis, a unified
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.
“ theory of plastic

buckling has %een
buckling applicable to both
developed. The results are

following section.

RESULTS AND CONCLUSIONS

3

COhlItU2 and 10Cd
presented in the

Ilyushin (reference 8) has treated the stability of plates .
stressed above the-elastic linxltwith consideration of the three
possible zones that might result from buclkling: (1) a purely
elastic zone, (2) a zone in which part of the material is in the
elastic and part is in the plastic state - Lhe ‘Jeliasto+plastic”
zone, and (3) a purely plastic zone in wh;.chall of the plate
is stressed beyond the elastic limit. A31 three zones my exist
simultaneously if the plate is not entiraly in the plastic state
before buckling or if the buckling is &l,l.owedto proceed beyond
the initial stages.

If, however, the plate is uniformly loaded before buckling
so that all.parts of it aro initid.ly at the same point in the

. plastic range end if, in addition, buckling and increase in load
are assumed to progress simultaneously, then the plate nay be.
expected to remain in the puzzelyplastic state in the eerly stages

. of buckling. This second aesumptlon is in agreement with the
. corresponding condition that apparently holds for columns

(reference 4) ●

~pon the assumption that the plate remains in the purely
plastic state during buckling, Ilyushinis general relations for
this state have been used to derive the differential equation of
equilibrium of the plate under ccmibinedloads. Since critical
stresses ere generally simpler ta compute from energy expressions

. than froma differential equaticm, the corresponding ener~ expression
were also found- These derivation are given in appendix A,
together with applicaticms to compressive buckling of various.typs
of plate=. A comparison with Uyushints treatment of the p&&tic.
buckling problem is given in appendix B*

The results of mast interest in the present analysis are given
in the folhwing table as values of a _tity q, the number by
which the critical stress computed for the eustic case must bo multi-

. plied to give the oritical stress for the plastic case:

●
L

- .’
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.

.

structure

Long flange, one
unloaded edge,
simply supported

Long flsnge, one
unloaded edge
clamped :

Iang plates, both
unloaded edges
siuply suppotied

Long plate, both
unloaded edges
clamped

Short plate
loaded aa a

column ()1<<1
-b

Square plate
loaded .asa

( 1column - =
‘b

Long column
()
~>>1
b

Esec

E

1-‘see #taJl .:
4-M4E

E“ .3!
Q ● 114 SeC ~ ~.fjfj tti

“E E

‘tsn

--%-’

Curve
(See fig. 1)

A

B

c

D

F

G

The~e values of’ q are plotted as curves ‘A to G in figure 1
for extruded 24S-JTaluminum s3.J.oyfor which the cxxnpressive yield
stress was 46 ksi. Similar curves for q could readily be
prepared for any other material having a known stress-strain
relationship.

. . —
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NACA TN No. 1556 5

The values of q given in the table were o%tained by dividi~
the critical stress of the structure in the _@astic region by the
critical stress that would be obtained on the assumption of perfect ‘“”‘–
elasticity. Since PoiseoB’s r&tio has been taken as one-half in both

—.

computations, errors fdom this cause will ordinarily be present In
both critical stresses. Most of these ez~ors will be eliminated,
however, in the Process of tivision to obtain ~j and, o~S~~&l~ly}
the values of q given ai-ebelieved tohe nearly correct.

When plate-buckling stresses in tineplastic range are to be cow
puted, the experimmtal value of Poisson’s ratiothat applies as
closely as possible.to the stressed mata ie.1,to~ether with the appm-

.. priate value of q from this paper, Shot:kibe used in the plate-
tuckling formula.

,,
The hi@est value of q which is -~. oen

there is negligible longitudinal bending ~as w5th

which bucld.esby twisting). The lowest value of

occurs whsn the londtudinal bendinrcpredominates

be realized only & .

a long hinged flange

q which iS ‘tm
7Z--

. over other t~es of
distortion (as with-e.long colum &d&r Euler buclgl.ing).The theory

. implies that a change in ~he stress-stre.tncurve caused by pre-

. stressing of the material would alter the value of q in the first
case but not in the second, if the buckling stress is higher than tk
highest stress reached during the ope~tiqn ~f pre-stressing. If, cn

.-=

the other hand, the buokltig stress is lower than the highest stress
reached during the operation of pre.stressing,
case.

National Advisory Committee for Aeronautics
Langley Meaoxial Aeronautical Laboratory.

Langley Field, Vs., July ~, Z347

then q s 1 for each

. —.—
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APPENDIX A

TBEORITZCAL DERIW!~IONS

DefinltfonR.- The Intensities of stress and strain are defined
in referenoe 8, respectively, as

2

v’

2,
ei. —

6X2 + 6Y* + Exe,,+q
\/j

where

ax stress in the x-directIon

E* strain in the x-direotion

%
strew irlthe y~irection

‘Y
strain in the y-direction

T shear stress

? shear slmain

v 4
(2)

.

●

the theory of plasticlt~,
defined, single-valued .

Accor?iuq to the fundamental hypothesis of
the intai~~i~yof ~tress

‘f is a uniquely

function of the intensity of strain et for any given material
.—

if Ui increases in magnitude (load3,& condition). If al

deoreases (unloading oondltion), the relation %etween Ui and ei

%ecomes lines as in a purely elastio case.

Zn the equations of definition (1) and (2), the material ieItaken -

to bo inccmpromitb and Poismnts ratfo = ~, The Qtross-utruin
.

r61ations compatible with the equations of definition (1) and (2) are: . .“

m

\
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.
.

.

.

,=A
‘see

ax - Ady s
2 x

e =—
x

= —-
E E
sec eec

. . .. . .

(3 j

These relations imply isotropy of the material.
-0

Variations of strain and stress-- W.en buckling occurs, let

~x$ ~;’$ and Y vary slightly from their values lefore buckling.
● The variations 5CX, tjey, and 57 will arise partly from the -.

variations of middle-surface strains and partly from strains due to
tending; thus, —

.

.

.

,, 1~~-.
5EX = G1 . 2X1 .-

&
Y= ‘2

- ZX2 (4}

Ey = 2E
3

- 22X
3

in which EL and e2 are”.piddle-surfacestrain variations and E
3

is the middle-surface shear-strain variation, Xl and X2 we the

changes in curvature and
‘3

is the change in twist, and z is the
.

distance out from the middle surface of the plate.

.
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and bT in SX,

(3),

.

..
The corresponding variations 5SX, &Sy,

‘Y’ and T must he computed. From equations

SX SE sec ‘X

I
therefore

(5)

Now the variation of the work of the internal foroes is

●

✎

so that

, ,.. i .* ..+’,,..
5ei =

“i

Uxq + a G
Y2

+ 2TE ~-z~X~i-ax2+2Tx
(6)

al

in equation (5) gives

.

Substitution of this value of bi

(- z axXl + ay?$ + 2T
5)]

.

h

.-..

.
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Let the coordinate of the

surface) be z = Zo. The

bei = O in equation (6);

By introduction of

by recognition of

z =
o

9 ---

surface for which ael = O (the neutr~

z. is obtained%y sitting
—

expression for

(7)

this coordinate into the expression%or 5SX and
‘i ~B E

dcfl as

~ Sec -~ q ‘ten

5S= = E~e=(l - ‘i)

‘x
+— (Esec )(%-Etan ax + cfyX2+ 2Tx

)
~ (Z-zo) (8)

u~ei \

In a similar way it may be shown that

and. ,- >.

&r = ?&c(, - .x$

(?’E+— sec - E-WI)(axxl + cry% + 2TX
)
~(z- ZO) (10)

3~iei

—

●

.



10 NACA TN No. 1556

Var~ttons of forcee’and mom nts.- 11’orthe variations of the
impre~d forces Tx, Ty, and TW and the moments ~, MY,

h,“1-

5M 12
h8TZdZ

Xy =
‘-%?.

. .

where h is the thicknesg of the plate.

(U)

.!

L:.
,“

1“
I

“/. .
I
I

l’-

1:
.

i
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where

E
D? Sec ‘3 ~ --

=—
g



Similarly,

dz

..Dt{[_,(.2’2@j
.

.

,*

.
.—

(13) ‘

(14) .

In these expressions,,the integrations of 5SX, 6SY, and 57 in

the plastic region h&e been taken over the optire ~hfckness of the
plate, with the implication that no part of the plate is beln$
unloaded, . . - .

Ectuatlonof eauilibriug,- If W(X,y) 1s the bending deflection
of the plate at buoklin~, and if no external moments are applied to
the plate, then the equation of equilibrium of an element of the
plate may be written

in

as

l?,

whioh the impressed forces aYh, uyh, and ‘fh are considered.
given (ax and uy are positive for compression), In terms of

the ch~es in curvatures are
●



.

. .

.

.

.

and

The chanGe in tvist is

b2w
x =—

3 &&

&3 ,

(3J%}—

(161))

-—

(160)

in equations (12), (13),

and (14),.respectively, are differentiated as required bj-e~uation (15)
c.ndsubstituted in that equation, the Cenere.1differential.equation
of equilibrium for a plate in the pkstic state is obt@.ned es follows: .-

L

In the elastic range,

,,

vhere
.

equation (17) reduces to the umol

(

ha a% & ~ ,T a%-.
D ‘:2 + “Y ?@

).
G

(17)

fOrm

●

D=’@
9
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EnerIz y inte~al.q.- Equation (17) is the Euler
results f~m a mfldmization of the integgal

1

#w s??.—
ax%xay+

NACA TN No. 1356

equation that

(18)

which ’representsthe difference between the stratn ener~ in the
plate and the work.done on the plate bythe external forceq. The
Coef’ficientein thi8’integraJ.are:

..

In the plastic region

,.,,.

()
..,Crxr “ ‘tanC2=3-7 l-F-

‘1 sec

.. a a + 2,2 %a)
C3 a-l 3 XY--—

(

1
4, =i2 - —E... i3eo)

.

.

h the elastic region .

‘1=2

C2 =0

.

.

.
,

,
c =1
3

Ck=o “

‘p ,

.
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.,r
,

.,
.’,1

,., .

. .

there ia a restraintof magnitade
this restraintitself is taken to

G
%

Y. is the ed.py mcoxiinate. (Sea refmemce 9 for fom of eqnwss!on.) in expression (19), tba

stiffness D1 ~EIam-d to le the mm as that in eguat’ion(U). If ‘rest~ts exe presentalong

‘twoedfps, there till %s two terms similarto expref3sion{19). Tbeae terms may be added to

inte~ (18) as additional strah emmg.
,. . .

i.n’whichthe vibes of the C;s in’fha “@iC ran@ are &ad. : ““This .e&wsOloi ror the crlticsl--

atrese Intensitymay be mlnlmized as with the correapondlng elastic case.

! ,, 1 ,, ,,
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If the values of the C’s In the elastic region are used in formula (20), the

critical-stress intensity h the elastic region ~uJel Is as fo~~:

. . .

&

(21)

(&)

Amlicatl~ to Pl~tea commwmed in %~e x4l9.rectfoa.-The theorytill now be”

appliedto flat, rectangularplates wdfomily compressedin the x-direction. Values
of ~ @.11 M computedfor the followingoases: ~

I.

II.

m.

,

“.
,.

,. i *“,*
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. . .,

>,

Wb9n aY,=T =0, q = ax and tbe plasticity cceff icienlm reduce to

C2=C4.

end.

Cc=
35

The Mffemntial f3quat~anuf equilibrium, equation

1

1, ,’,,

0

1.

(17), then becmas

and th correepnttlmg” enbrfg- expreadon (20) for tliecrltlcd. ati+m

(23)

in ‘theplagtio range
ImmlQaa

Cam 1: RlasMcally nmtral&d fI.ange

If y :0 IB the elaaticellynmtraimxl edge of the ~lenge and y = b ia the free
e~, a deflectionwmface lmcwn to he good in the elaetlorange aml presumably saH-
factoryalso lwycndthlo range is (reference9)

(24)



where

ad E is the ma@tude

in eqnatlon (24) givm

< = 4.963

a2
= 9.&j2

.53= +.na

of the elastic restraint. Suln3tltutlon

,— /

J

of this expressionfor w

mere

c1
= 0.23694 G

5
= o.56712

C2 = 0.79546 C6 = 0.17564

C3
= o.@395 C7 ~ 0.19736

CL = 0.04286 c~ 5 -2.3168

C9
“ 4.*

I-J
a)

G
y

. . ,,
t . .

P ,
. .

*
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.,

lb orter to find the ml.nhum m.lue of

.,

, ,
,.

x% ~—=
a(+!’)2
\

. . .

The SdJlhml Vslw of ( U=)ml 1s tbmef m’s

For the elastic case, the

D? replacai by D. Fran

,.

‘8

1“
,1

sfum3 expresslm is obtafned from equation (21) with Cl u 1 and

equat ion (24 thkmef OR ,

.. .

-. -.! ...

., -

I

,.

.
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‘ (a)”If the e&3 .y= O fe Mrgaa, G .0 and, fkm eqmti&; (&3),

E
Sec

l-l=-y- (26)

“figure 1. -TbB tidividual points re&ese~t the NACA tests of the buokling of crudkom-

section colomm for which the ctmdition 6 . 0 is t%lfil.led.

{b] If the ed@ y = O iB clemped, 6 = 01 and, from equation (’5),

or

.

. .
.

,=L4330+b.6.&7zj-)

,.

,,

1
. .

. .
..’

.
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This value of ~ is plotted as cke B for’r2@T-~&inum alloy
in figure 1.

.. . .
Case II: Plate “e~asticallyrestmafnpd along two @oaded edges

+ ~ are the immovable unloaded.edges which areIf Y=V2 . .

elastically restrained against rotation by restraids of magnitude ~,a
satisfactory &efloction m.lrfcmeis known to be (refermce 1.0)

Substitution of this expression for w“ in equation (2k)

where

and .

,..

,’
0.0046U% 0.0947G +

o.o114e2 + 0.1894E + 1
f2(G) =

o.oo461e2 + 0.0947G + $

In order to.find the minim-value of

which gfves

()Cr

x @

o.

.-i -.

gives
: i ..-

-.
,-

—.

—-

.,

-.

.—

.



22 NACA TN No. 1556

For the elastic case, the s- e~ression is obtained from

[
equatton 21) with Cl = 1 and D~ replaced ‘by D. From
equation 22), therefore,

E 2{C; \f@ + f2(~)s sec.
l-l

E
r

2’ fl(c) + fp(e)..

(a) If the edges y = ~ ~ are hinGQd, c = O, fl(c)

f2(e) = 2, and, from equation-(28),

n . ‘SeeL!!z
-E- 2-

This value of v is plotted
figure 1.

(b) If the edges y = *

—

.

(28)

= 1,

(29) .

.

as curve C for 24S-T aluminum alloy in

b
sre clsmped, e= ~, fl(e) = 5.15,

F
fp( c) = 2,46, and, from equation (28),

This VdUe Of ~ i.splottea as curve D for 24-FATalumiruanalloy
in figure 1.

.

.
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Case III: Plastic bucH@g of columnf. “.” “

For the discussion of the plastic bucH.&g of columns, it ie
convenient to revert to the differential equation (23). The plate,
when loaded as a column, has t.wo,free ed~es descEibed by the condi-
tions

. . .,

A soiution of equation (2s) which identically satisfies the-first:’
condition is

.

,.
.’.

,-.

,
where

. .

.

-.
—.

a=ll i+’+s%i?-i)<.
,.. .-<

;.-.”.

,.. . .

. .

.-

—-
.-
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In
at

order that this
the free edges, it”is required that

NACA TN ~0* l~x .“

the second condition
.

. .
.-

r- -
—

-,-— ,- .

10] I “)]2tsmhg ‘ ,m2tan E
a2q p - & +P?T q+

\
*=0

z a 2,
5

(31) -
— 2

which Is the buckling criterion for the plate whe,nloatid as a
column. Let

(32)

where ~2 is a quantfty to be determined for three individual cases.
By use of equatton (?2) .,

2
P

()
-q=$

and the buckling criterion given

~2q2
tanhg’
—+

a
z

,., i

in equation (31) becomes

Ptan ~
#p2 -—=0

E

.

.

m

.
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.
-.

.

From equation

stress In the

. .

where

The corresponding

h
P = -

r 12

criticsl stress in th~

,.

elastic range is

.
The reduction factor q is obtained from formula

●

*
()

g ‘s~c , ; E;en ‘
i- ~~=

.

(22) as

(34)

(a) ,Inorder to investigate the case O? short c@~, ~y 5~. ..... .-
approach zero. Then, by definition of ~j’ - “’ - ““’ ““” -–

.
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.

Sn addition,

t~.J2
2 -+1.—

E’
2

The buckling criterion

[(
E2+ &

given i.n, equati.on (33) therefore reduces to

j@~jy=o

The expression tn the brackets approaches &
2

as ~~ O. In order

to satisfy the buckling criterion, therefore,

tanh :

—-+0
a

2

which mm be realized only if a itslargej that is, if ~ is large.
For ehort columm, therefore,

kj.mo

and,f~om equmtion (31+),

. 1 ‘see
n

+ 3’%-—- —
J+ ~ 4~

(35)

This value of q is plotted as curve E fOr 2&T &i.UminUllld-10y
in figure 1.

.

.
.

.

.-

.

.

●

✎

.
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1, \-

-p+(i+(++j ‘w=.-k2

which is satisfied by ~2 = o,~5375. Fromeqwtion [34),

E
‘tallq = 0.114 -+o. $86———
E

This WilLle of q is plotted as curve F for 2&T aluminum
in figure 1.
. .

(o) For long columns, a ~a B become 80 small that

and the %uoK1.ingcriterion of equation (33) ,reducesto

which is satisfied by ~2 = ~. From eqmtion (34),
,. ..

.

‘tan
i ‘=57

(36)

alloy

—

=0

.

(37)

This vslue of q agrees with the experimental results of —
references 2 ~ k and is plotted aa curve G for 24S-T aluminum
alloy infQure 1.
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COMPARISON WITH ILYUSHIN?S STABILITY CAICTJLATIONS ‘

The %asic difference between Ilyushin’s solution of the plasti~
buckling problem and that given in this paper is that Ilyushin con.
siders the plate to unload on one face es it-buckl.es~ The unloading
process results in the creation of an elasto-plastic zone in the
plate, and different eqpatiwq from those that apyly when the plaiie
remains ylastic during the ‘bucklingprocess are required fol this
zone. .

The differential equation foi}the buckling of a rectangular
plate when buckling is accompanied by unloading is given by Ilyushin
a= equation (3*43) of refei”ence 80 For simple co~iressi~ in the
x-direction this equation is of the same form as eqution (23) of
the present paper, hut with the fo~lowing different constants:
D is used instead of D! and

.

.

.

is used instead of & . In the formula for k, from equation (3,1) .

of reference 8,

and, from equation (1,22) of reference 8,

When the values of ~ and A are inserted into the expression
for k

.

.

.
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Computation shows that k is always larger them — , so that t~.

‘tan
‘sec

use of k h place of — will result in appreciably higher values
E .
sec

of ~ then those given in the present ~~r. Since Ilyushin uses
the elastic value D there is no possibility of the solution
yieldfig a secant m&Lu&. Curve, A to G in figure I, if com-
puted from Ilyushin rs e qkatikn (3, 43), would sta-t with a horizontal
line at unity for curve A (Youngfs modulus) and end with curve G
expressing”the K&& doulle modulus which is appreciab~ higher then
the tangent modulus of this paper. If D’ were substituted.for D
in Ilyushinrs eqyaticm (3.43), curve’ A would then represent the
secant modulus as it does in the present paper, lut curve G would
sti~ remain tie =’= dofiblemodulus ● Therefol’e$ when the unl&ding
of the plate durin$ the buckling Pi”ocess is consi,dere~results are
obtained which are not confirmed”ly expei’iment,

*

.-
.-

,

.

.
.

.
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A Hinged flange; (~~ ; fest data, o

B Ctomped flange

E
C Long plate, hinged edges

.,9

E
D Long plate, clamped edges

E Short column (~ (( l)
F

F Square plate loaded as a column (~= t)
G

G Long column (* >1); (*)

“-–

0 10 20 30

Compressive stress, ksi
,

,
Figure 1.— Computed curves showing variation of
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q with stress for

various structures of 24S-T aluminum alloy in compress”~. (Curves

A to G are drawn far a material with a yield stress of 46 ksi. The

scatter bond enclosing curve A shows the Iimits of variat-bn of specimen

properties from this value.)

●


